NDSS 2025 – Automated Mass Malware Factory
Session 12B: Malware
Authors, Creators & Presenters: Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huaz
Why PAM Implementations Struggle
Session 12B: Malware
Authors, Creators & Presenters: Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huazhong University of Science and Technology), Teng Xu (Huazhong University of Science and Technology), Wei Yuan (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)
PAPERAutomated Mass Malware Factory: The Convergence of Piggybacking and Adversarial Example in Android Malicious Software Generation
Adversarial example techniques have been demonstrated to be highly effective against Android malware detection systems, enabling malware to evade detection with minimal code modifications. However, existing adversarial example techniques overlook the process of malware generation, thus restricting the applicability of adversarial example techniques. In this paper, we investigate piggybacked malware, a type of malware generated in bulk by piggybacking malicious code into popular apps, and combine it with adversarial example techniques. Given a malicious code segment (i.e., a rider), we can generate adversarial perturbations tailored to it and insert them into any carrier, enabling the resulting malware to evade detection. Through exploring the mechanism by which adversarial perturbation affects piggybacked malware code, we propose an adversarial piggybacked malware generation method, which comprises three modules: Malicious Rider Extraction, Adversarial Perturbation Generation, and Benign Carrier Selection. Extensive experiments have demonstrated that our method can efficiently generate a large volume of malware in a short period, and significantly increase the likelihood of evading detection. Our method achieved an average attack success rate (ASR) of 88.3% on machine learning-based detection models (e.g., Drebin and MaMaDroid), and an ASR of 76% and 92% on commercial engines Microsoft and Kingsoft, respectively. Furthermore, we have explored potential defenses against our adversarial piggybacked malware.
ABOUT NDSSThe Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.
Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations’ YouTube Channel.
Permalink
*** This is a Security Bloggers Network syndicated blog from Infosecurity.US authored by Marc Handelman. Read the original post at: https://www.youtube-nocookie.com/embed/e4xZrPunqxI?si=3_cPrn5KuIY9ii9a
