AndyC

Andy Curtis is an award-winning security consultant, researcher and public speaker. He has been working in the computer security industry since the early 1990s, having been employed by state and federal government, leading healthcare and banking providers across three continents. He has given talks about computer security for some of the world’s largest companies, worked with law enforcement agencies on investigations into hacking groups, and is a regular voice on TV and radio explaining IT security threats.

CIOがAIに光を与える5つの方法

現実的であるということは、長所と短所を理解し、この情報を顧客、従業員、C-suiteの同僚と共有することを意味する。彼らは、あなたの率直さを高く評価するだろう。明確に説明し、理解できるように、権威ある弊害と欠点のリストを作成する。AIアドバイザーが指摘しているように、ブラックボックス問題、人間の誤った主張に対するAIの脆弱性、幻覚など、マイナス面は枚挙にいとまがない。 企業としての利用方針を定める 以前の記事で述べたように、企業利用方針と関連するトレーニングは、従業員にテクノロジーのリスクや落とし穴について教育し、テクノロジーを最大限に活用するためのルールや推奨事項を提供するのに役立つ。ポリシーの策定にあたっては、関連するすべてのステークホルダーを必ず参加させ、組織内で現在どのようにAIが利用されているか、また将来どのように利用される可能性があるかを検討し、組織全体で広く共有すること。ポリシーは生きた文書とし、必要に応じて適切な周期で更新することが望ましい。このポリシーを導入することで、契約、サイバーセキュリティ、データプライバシー、欺瞞的取引行為、差別、偽情報、倫理、知的財産、検証などに関する多くのリスクから守ることができる。 各ユースケースのビジネス価値を評価する 純粋なテキスト出力の場合、私たちは、優れた文法で書かれたAIからの回答を信じる傾向がある。心理学的に言えば、私たちは背後に強力なインテリジェンスがあると信じがちだが、実際には何が真実で何が誤りなのか、AIは全く理解していない。 ジェネレーティブAIには優れた使用例がいくつかあるが、ケースバイケースでそれぞれを検討する必要がある。例えば、AIは一般的に技術的な予測を書くのが苦手だ。出力される内容は、私たちがすでに知っていることを教えてくれることが多く、また盗作である可能性もある。リライトツールやリフレーズツールを使うことさえ、問題を悪化させる可能性があり、チームは自分たちで予測を書くよりも、こうしたツールを使うことに多くの時間を費やすことになる。戦いを選び、そうすることに明確な利点がある場合にのみ、ジェネレーティブAIを使うのがベストだ。 厳格なテスト基準を維持する ジェネレーティブAIは、組織内の多くの従業員によって利用される可能性が高いため、従業員に長所と短所について教育し、企業の使用ポリシーを出発点として使用することが重要である。これだけ多くのAIが採用される中、我々は皆、事実上テスターであり、学びながら行動している。 組織内では、IT部門であれ事業部門であれ、本番稼働前にテストや実験を行うことを重視し、かなりの時間を確保すること。従業員が経験や学んだ教訓を共有できる社内実践コミュニティを立ち上げることも、全体的な意識を高め、組織全体でベストプラクティスを推進するのに役立つ。  (more…)