NDSS 2025 – MineShark: Cryptomining Traffic Detection At Scale


SESSIONSession 3A: Network Security 1
Authors, Creators & Presenters: Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi

[…Keep reading]

NDSS 2025 – MineShark: Cryptomining Traffic Detection At Scale

NDSS 2025 – MineShark: Cryptomining Traffic Detection At Scale


SESSIONSession 3A: Network Security 1

Authors, Creators & Presenters: Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)
—-PAPER—–
MineShark: Cryptomining Traffic Detection at ScaleThe rapid growth of cryptojacking and the increase in regulatory bans on cryptomining have prompted organizations to enhance detection ability within their networks. Traditional methods, including rule-based detection and deep packet inspection, fall short in timely and comprehensively identifying new and encrypted mining threats. In contrast, learning-based techniques show promise by identifying content-agnostic traffic patterns, adapting to a wide range of cryptomining configurations. However, existing learning-based systems often lack scalability in real-world detection, primarily due to challenges with unlabeled, imbalanced, and high-speed traffic inputs. To address these issues, we introduce MineShark, a system that identifies robust patterns of mining traffic to distinguish between vast quantities of benign traffic and automates the confirmation of model outcomes through active probing to prevent an overload of model alarms. As model inference labels are progressively confirmed, MineShark conducts self-improving updates to enhance model accuracy. MineShark is capable of line-rate detection at various traffic volume scales with the allocation of different amounts of CPU and GPU resources. In a 10 Gbps campus network deployment lasting ten months, MineShark detected cryptomining connections toward 105 mining pools ahead of concurrently deployed commercial systems, 17.6% of which were encrypted. It automatically filtered over 99.3% of false alarms and achieved an average packet processing throughput of 1.3 Mpps, meeting the line-rate demands of a 10 Gbps network, with a negligible loss rate of 0.2%. We publicize MineShark for broader use.
—–ABOUT NDSS—–
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.
—–
Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

*** This is a Security Bloggers Network syndicated blog from Infosecurity.US authored by Marc Handelman. Read the original post at: https://www.youtube-nocookie.com/embed/4FQFf_8PJVw?si=K4rDtsWj0ycN2w_1

About Author

Subscribe To InfoSec Today News

You have successfully subscribed to the newsletter

There was an error while trying to send your request. Please try again.

World Wide Crypto will use the information you provide on this form to be in touch with you and to provide updates and marketing.